Finite Group Actions on Siegel Modular Spaces
نویسندگان
چکیده
The theory of nonabelian cohomology is used to show that the set of fixed points of a finite group acting on a Siegel modular space is a union of Shimura varieties
منابع مشابه
On Atkin-Lehner correspondences on Siegel spaces
We introduce a higher dimensional Atkin-Lehner theory for Siegel-Parahoric congruence subgroups of $GSp(2g)$. Old Siegel forms are induced by geometric correspondences on Siegel moduli spaces which commute with almost all local Hecke algebras. We also introduce an algorithm to get equations for moduli spaces of Siegel-Parahoric level structures, once we have equations for prime l...
متن کاملHecke Operators on Hilbert–siegel Modular Forms
We define Hilbert–Siegel modular forms and Hecke “operators” acting on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear transformations are not linear operators until we consider a direct product of spaces of modular forms (with varying groups), modulo natural identifications we can make between certain spaces. With Hilbert–Siegel forms (i.e. with arbitrary Siegel d...
متن کاملOperators on Hilbert - Siegel Modular Forms
We define Hilbert-Siegel modular forms and Hecke “operators” acting on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear transformations are not linear operators until we consider a direct product of spaces of modular forms (with varying groups), modulo natural identifications we can make between certain spaces. With Hilbert-Siegel forms (i.e. with arbitrary Siegel d...
متن کاملGroup Actions on Quiver Varieties and Applications
We study algebraic actions of finite groups of quiver automorphisms on moduli spaces of quiver representations. We decompose the fixed loci using group cohomology and we give a modular interpretation of each component. As an application, we construct branes in hyperkähler quiver varieties, as fixed loci of such actions.
متن کاملSiegel Modular Forms of Genus 2 and Level 2: Cohomological Computations and Conjectures
In this paper we study the cohomology of certain local systems on moduli spaces of principally polarized abelian surfaces with a level 2 structure that corresponds to prescribing a number of Weierstrass points in case the abelian surface is the Jacobian of a curve of genus 2. These moduli spaces are defined over Z[1/2] and we can calculate the trace of Frobenius on the alternating sum of the ét...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010